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The Elliptical Surface Wave Transmission Line

SEMBIAM R. RENGARAJAN, MEMBER, IEEE AND J. E. LEWIS, SENIOR MEMBER, IEEE

Abstract— Electromagnetic wave propagation on an elliptical cross-
sectional surface-wave transmission line is investigated theoretically. Char-
acteristic equations for odd and even hybrid modes are derived and solved
numerically. Expressions are obtained for power flow, energy storage and
power loss using a perturbation method. Numerical results on propagation
characteristics of three lower order modes are presented. The ,HE,, mode
is shown to have low attenuation particularly at high eccentricities. The
propagation characteristics of lines of high eccentricities are found to be
slowly varying functions of dimensions,

I. INTRODUCTION

INGLE WIRE transmission lines and dielectric
coated conductors of circular cross sections have
been studied extensively [1]-[5]. King and Wiltse [4] have
shown that the circular Goubau line has application in
millimeter wave propagation because of low attenuation.
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Cutoff wave numbers of several low-order modes in
Goubau lines have been reported recently [5]). The even
dominant mode in elliptical dielectric rod and tube wave-
guides has been shown to have lower attenuation than the
corresponding mode in circular dielectric waveguides.
Also, the attenuation is a slowly varying function of
dimensions in the elliptical case, resulting in greater di-
mensional tolerances [6]-[9]. It follows that Goubau lines
of elliptical cross sections should exhibit improved propa-
gation characteristics over circular cases.

Karbowiak’s [10] analysis of the elliptical Goubau line
has very limited applications since he considered only one
term in the infinite series for field expressions. Roumelio-
tis et al. [11] have obtained wavenumbers of certain modes
in the above waveguide for small eccentricities only. Prop-
agation characteristics of elliptical Goubau lines have not
been reported.

In this work, the elliptical Goubau line is studied theo-
retically using the perturbation method and numerical
results for propagation characteristics are presented.

II. FieLp COMPONENTS

The elliptical Goubau line consists of an elliptical cylin-
drical conductor coated with a confocal dielectric layer as
shown in Fig. 1. Though a constant dielectric thickness
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Fig. 1. Elliptical surface-wave transmission line and coordinate system.

would be of greater practical significance, the elliptical
dielectric layer simplifies the analysis. Due to the lack of
circular symmetry this waveguide can propagate only hy-
brid modes.

Omitting the 1—z dependence, e/“* A2 where B is the
phase coefficient and w is the angular frequency, the
lossless axial fields in region i, (i=1,2) for even modes are

o0
E,= X a40(¢, q,)se,(n, ;)
m=1
e .
H,= 3 bPBO(E, g,)ce,(n. q;) M
m=0

where a? and b{" are arbitrary constants, and 4{)(£, g,)
and BY)(¢,q,) are functions of modified Mathieu func-
tions in region i. The functions for region 1 are chosen
such that the tangential electric fields are zero on the
conductor, while for region 2 all functions vanish at
infinity.

The parameter g, is given by

‘Ii=(ki2_ﬁz)h2/4

where k; is the wavenumber for region i and 4 is the
semi-interfocal distance, and

Se,,(£0,41)
S m g’ -G m\S> »
en($> 1) ey (0 dr) (&)
for even modes
Ag)(£9q1)=
Se,’,,(&o,ql)
S > —_—G m > B
en(£,91) G (£or ) eV, 41)
for odd modes
AD(&, q,) = Gek,,(£,9,) (2
Cerln(gm‘h)
C ,qy)— —————— Fe . q1),
e.(§,91) For (20, 4)) &,.(¢:91)
for even modes
Br(;t"(§9ql)=
Ce, (&0, 491)
C s —__F m s s
e, (£,4,) Fey, (£0.4,) en(£.4,)

for odd modes

BP(&,q,)=Fek, (£, q,). (3)

Leaving the second term from (2) and (3) for i=1 yields
the field expressions for the elliptical dielectric rod wave-
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guide [6]. The transverse field components are
_ J
(k?-B)L

=<}
18 2 as:;)Asrit)l(g’ qi)sem(na qx)

m=1

E,,

o0

+wp,; 2 b,(,f)B,S)(g, g;)ce,(n, ‘Ii)}
m=0

_ J

o0
Ey=———"——1B 2 aiA0)(£,q,)se,(n,q,
" T L > (£, 4,)5e,(n, 4,)

m=1

o0
— Wy, 2 br(rf)Br(ni)l(ga g;)ce,(n, qi)}
m=0

_ J

[s o]
Hy=—————| —wg aPAS(E, q,)se;,(n, q;
b= G| e 2 AN a)se n.a)

m=1

+.B 2 br(ni)BS)l(gs qi)cem(na qz):l

m=0

. 0

J .

H,=- we; 2 affl)Aﬁi.)(ﬁ,q,-)Sem(n, ;)
! (kf—BZ)L[ m=1

+8 X b,‘n"Bri’)(S,qi)cein(n,q,)} 4

m=0
where
L=h[(cosh2&—cos2q)/2]"?

and p; and ¢ are the permeability and permittivity of
medium i, respectively. The field components for odd
modes are obtained by the method given in Appendix A.

III. CHARACTERISTIC EQUATIONS

The characteristic equations are obtained by matching
the tangential fields at the boundary, {=§,. Matching the
axial fields given by (1) at £=¢,, and making use of
orthogonality properties of Mathieu functions given in
Appendix B, yields

’

o
aPAP(E1q)= 3 aPAD(£1,42)B,,,
m=1
o0’
bpgl)Br(l)(gls q1)= 2 br(nZ)Br(nZ)(gl’ q2)am,r (5)
m=0

where a,, , and B, , are defined in Appendix B, and the
prime over the summation sign means that either odd or
even values of m are used, depending on whether r is odd
or even.

Matching the azimuthal fields given by (4) at £=¢, and
making use of (5) to eliminate the arbitrary constants in
region 1 and the use of orthogonality properties of Mathieu
functions given in Appendix B yields two sets of infinite
homogeneous equations

oo’ «©
S a@e, ,+ 3 b2, =0
m=1

’

o

o0’
2 2 =
2 aSn) m,r+ 2 btgn)hm,r_o

m=1 m=0

(6)
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where the functions e, f, g, # are defined in Appendix C.

In order that (6) may be satisfied, the infinite determi-
nant of the system must be set to zero. This determinental
equation, which is the characteristic equation takes two
forms depending on m and r being odd or even. For odd
values of m and r

en Ju : ey Ju

gn hul g hy

______ '____..-_'

e Sz 1€ Sz =0 )
8 hi3 {_8_33_ _h_qs_:_' __

While for even values of m and r

P g0 _Pn_ 80 Ao
Joo 1 € fzz-: e Jfo
hoz }_%22'_ _h.22_|_g‘2_£2 =0 (8)
Ja €4 Ju :344 Jas | I
h h B V-
5)4 8?4 24 |_g:t4__744_:_‘ -

The characteristic equations for odd modes can be
obtained from (6) using the method given in Appendix A.
They may also be obtained from (7) and (8) by inter-
changing ¢’s and p’s and changing the signs of f, , and
8, , for all m and r. Characteristic equations similar to (7)
and (8) have been obtained for elliptical dielectric wave-
guides [6], [12].

IV. MOoDE SPECTRA

The mode spectra for odd and even hybrid modes are
obtained by a numerical solution of the characteristic
equations and are shown in Fig. 2. The required Mathieu
functions and related parameters are generated by an
accurate algorithm [13]. The mode designation is obtained
from the sequence of solutions and by comparing the
modes for the circular and elliptical cross sections. The
(HE, . (.EH,, ) and jHE  (,EH,,) modes degenerate
to the well known HE,,,(EH,,,) modes of the circular
Goubau line as the elliptical cross section degenerates to
the circular case, while ,HE,,(,EH,,) modes become
H,,(Eo,) modes. It is observed from Fig. 2 that the
,EHg, .HE,;, and ;HE,; modes have zero cutoff fre-
quencies, as do the corresponding Eg; and HE,; modes in
the circularly symmetric case [2].

It has been reported [6]—[8] that the infinite de-
terminantal equations in the case of elliptical dielectric
waveguides are fast convergent for other than high ec-
centricities. This behavior also has been observed for the
case under study.

A. Field Distribution

The arbitrary constants in region 2 at any point on a
given mode are obtained by the singular value decomposi-
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Fig, 2. Mode spectrum of the elliptical surface-wave transmission line
for e,,=2.26, ¢,,=1.0, £,=0.909, £,=1.0.
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Fig. 3. Radial dependence of electric and magnetic fields of the ,EHy,
mode for &,,=2.26, g,,=1.0, ko/B=0.974, (hcosh §,)/A,=0.524.

tion method [14]. The constants in region 1 are obtained
from (5) and the field components can then be computed
from (1) and (4). It has been found that even though the
characteristic equations are fast convergent, the size of the
characteristic determinant is required to be relatively large
to produce good field matching at the boundary. In this
work, characteristic determinants up to order 12 were
used, depending on eccentricity, phase constant, and nor-
malized wavelength.

Typical plots of the radial variation of the electric and
magnetic field components for ,EH,; mode are shown in
Fig. 3. The ,HE,, and ,HE,; modes are found to have
similar characteristics. However the angular variation of
HE,,,(EH,,,) modes have primarily a harmonic variation
of order m.

V. PROPAGATION CHARACTERISTICS

A. Phase Characteristics

The phase characteristics are obtained by numerical
solution of the characteristic equations. The phase char-
acteristics of _EH,, .HE,;, and _HE,; modes for
different dielectric constants, dielectric thicknesses, and
eccentricities are illustrated in Fig. 4(a), (b), and (c). It is
found that, even though it has zero cutoff frequency, the
o,HE;; mode has the highest value of normalized phase
velocity at any given frequency and hence it is the weakest
guided mode. Near cutoff, the phase characteristics of the
HE,, mode resemble those of ,HE,; mode, whereas
far-above cutoff the phase velocity approaches that of the
,EH,, mode. From Fig. 2 it is found that higher order
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Fig. 4. (a) Phase characteristics for different eccentricities, ¢, =2.26,
¢,,=1.0. (b) Phase characteristics for different dielectric constants,
§,=0.909, £,=10, ¢,=10. (c) Phase characteristics for different
dielectric thicknesses for ¢,, =2.26, ¢,,=1.0, §,=1.0.
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Fig. 5. Power distribution characteristics for e,,=2.26,

£,=0.909, £, =1.0.

£,,=1.0,

modes have more rapid variation of their characteristics
with dimensions, particularly near cutoff.

The normalized phase velocity increases with eccentric-
ity and decreases with increasing dielectric constant or
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thickness. The separation between the phase plots of
+EHy; and JHE,, modes increases with eccentricity.

B. Power Flow

The power flow though medium i is given by

F.———L fZW(Eng ~E, HE)L*dn ds
—1

©)

where £, = co. Substituting the expressions for £, H,, E,,
and H, from (4) in (9) yields for even modes

h4 &1

[ > bO(7BIE, q)

+CO BE,q))+ S as;ff
m=1 i

A7ADE, )+ SP A8, 4,)} | a8

, . A
+(_'8_iﬂeﬁ % § pPaOT®,
h? m=0n=1 ’

[ BO(¢, q,)A(')(€,Q,)]g, ,

2 .
IBw.Uw 2 2 b(,)b(,)c'g,)"

1 m=0n=m+2

[ B9(¢, ) BO(E, ¢,)— BO(%,a)BP (8.a) ]E

’

2,8008 % 2

m=1n=m+2

LAY (. Ak )~ A(”(ﬁ a4 (6 a)]i
[Ba(a) ()] ™! (19)

'[am(qt')“an(qi)]_l

aDadS,

where a,(q;) and b,(q,) are the characteristic values of
even and odd Mathieu functions of order m, respectively.
The angular integrals C,f,'),,, 8, and T,(), are defined in
Appendix D and the primes over the summation indicate
that only odd or even integral values are used.

The power flow expression for odd modes is obtained
by the method given in Appendix A.

The fractional power carried by media 1 and 2 for
JEH,,. .HE,,. and _HE,, modes is shown in Fig. 5. Most
of the power is carried in medium 2 near cutoff and in
medium 1 far above cutoff. Among these three modes at
any given normalized frequency the ,HE,; mode carries
the largest fraction of power in medium 2.

Since the Goubau line is an open structure it is subject
to radiation and interference at bends or discontinuities.
It may be shielded by being embedded in a material such
as polyfoam as suggested for the dielectric tube waveguide
[15]. The power concentration characteristics of Goubau
lines are illustrated in Fig. 6 which shows a plot of the
semi-major axis of the ellipse within which 99.9 percent of
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Fig. 6. Power concentration characteristics for different dielectric
thicknesses, €, =2.26, ¢,,=1.0, £, = 1.0.

the total power is contained versus the semimajor axis of
the outer boundary ellipse, both normalized to free-space
wavelength. It is seen that power concentration near the
guide decreases with eccentricity. It is seen also from Fig,
6 that the ,HE,, mode has the largest radial extension of
the three modes considered.

C. Energy Storage

The energy stored per unit length in medium i is given
by

Wim 5 [NEP B + 1B ) 2 anag )

where £, = c0. Using (1) and (4) in (11) yields for the even
modes

2= [¢| S 00 (0501, 0) + 00,96, )
81 1 gl A me=o0 m h4 ) m, m=—m i

i

12 i ¥ H

+ 3 Braea)r T aea)
m=1 m=1

2 2 2
{ th(') +'§4 S,S)m+%wcosh2£}af,';)2]d§
2 2 i 252 i i i
3 5 {20 )agap

i, ;
[ 495, 0)4P(E, ) - 49(5, 0) 49 (¢, 9 15
2 2 oo’ oo’
ME S 3 sy,

i m=0 n=m+2

[ B (¢,4,)BP(¢, 9,) ~ B(')(s,q,)B“)(s )]s

[ ba(g:)=b,(g,)] "+

Lam(a)—a (q,)]“+ 2 2 bDaOTD,

imOnl

[ B, 90498, 9§ (12)

where the integrals C),, SO, T.{7 , and ¥\, are defined
in Appendix D. The expression for odd modes is obtained

from (12) by the method in Appendix A.
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D. Power Loss

Power loss per unit length N, in a dielectric is obtained
by the perturbation method.

N, =wtané; W, (13)

where tan§; is the loss and W, is the energy stored in the
medium,

The power loss tangent in the conductor is obtained by
a perturbation method from the lossless fields. The con-
ventional perturbation method to find the power loss in a
hollow conducting waveguide using the intrinsic imped-
ance of the metal as the surface impedance has been
shown to be applicable to elliptical cross section [16]. The
conductor power loss per unit length for the Goubau line
is given by

Po=5 [ Hal®R, Lay +2f |Hy?R,, Ldn (14)

where R, = bl , @ is the permeability, and o is the

conductivity of the metal. Substituting for H,, and H,
from (1) and (4) in (14) yields for even modes

2 2 b(l)b(l)B(l)(go’ ‘11)3(1)(50’ ;)
m=0 n=0

27
.fo ce,(n, q1)ce,(n, q,)y1—e*cos’n dn

R =’
4 2
2h hcosh 50 m=

—Thcoshgo[

o’
2 BB, q1)
0On=

(1. 41)ce,(n.91)
\/l—e cos?q
oo o0’

+o'e 3 2 al)aPAl) (§o, )4 (§o. 41)

m=1n=1

B(l)(go, )f27 ce’

’

. f27r se,(n,q,)se,(n,q;)
0

V1—e?cos?n

’

.
+20e8 2 2 bYaPB (¢, 9)AY (0, 01)

m=0 n=1

dn

) f21r ce;,,('n, ql)sen("’a ql)
0

V1—e?cos?y

where e=1/cosh{, is the eccentricity of the elliptical
cross section of the conductor boundary. A similar result
for odd modes may be obtained from (15) by the method
described in Appendix A.

dnq (15)

E. Attenuation Characteristics

The attenuation coefficient is obtained from computed
values of power loss and power flow. The attenuation
characteristics of three low-order modes are shown in Fig.
7 for different dielectric thicknesses and eccentricities.
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Fig. 7. Attentuation characteristics, &,;=2.26, ¢,,=1.0, tan§="5-10"%,
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Fig. 8. Group velocity characteristics for different dielectric thick-
nesses, ,; =2.26,¢,, =1.0, £, =1.0.

The attenuation increases with dielectric thickness. As
predicted by phase and power flow characteristics, ,HE,
mode has the lowest attenuation at any given normalized
frequency. Also the attenuation is a very slowly-varying
function of dimensions in lines of high eccentricities. The
difference in attenuation between the ,HE,; and ,EH,,
modes increases with eccentricity.

G. Group Velocity

The group velocity can be obtained from the power
flow and energy storage per unit length

2 2
o= S/ SW,

i=1 i=1

(16)
where F, and W, can be computed from (10) and (12).
Group velocity characteristics normalized to the free space
velocity v, of a line for two diclectric thicknesses are
shown in Fig. 8. Near cutoff group velocity is close to the
free space value, while far above cutoff, it approaches the
velocity of TEM waves in the dielectric.

VI.

In this work, results of a comprehensive study of the
propagation characteristics of elliptical surface wave
transmission lines are presented. The mode spectrum
shows a direct correspondence to that of the circularly
symmetric case. Two orthogonally polarized degenerate
HE,, modes in the circular waveguide are split into non-

CONCLUSION

degenerate even and odd HE,; modes in the elliptical
case. Propagation characteristics of nearly degenerate E;
and HE,; modes in the circular case are widely separated
in the ,EH,, and HE, modes of the elliptical guide. The
.EHg, and HE,; modes in the elliptical waveguide have
lower attenuation than the corresponding modes in the
circular case. Also, the propagation characteristics of
Goubau lines of high eccentricities are slowly varying
functions of transverse dimensions and frequency. Hence
the elliptical waveguides have the advantage of greater
dimensional tolerances over the circular ones. The JHE,;
mode in the elliptical line is weakly bound to the line and
has possible application in low loss transmission particu-
larly in millimeter wave frequencies.

APPENDIX A

Functions to be interchanged to obtain expressions for
odd modes from those of even modes

a bid
Aff.)(&qi) Br(ni)(g’qi)
Agj,)'(g, ;) BIS:),(£7QI')
se(1,4;) ce,.(n,4;)
se,(1,4;) cen (M, 4;)
San Coln

Van U,
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Tn(ai)n - T,r(,i) APPENDIX D
’ o n
b,(g,) a,(q;) Integrals involving products of angular Mathieu func-
tions and derivatives in Sections V-B and V-C
am N4 Bm, r
® = [*7 2nd
‘Pm,r Pou,re - Vm,n" o sem(n’qi)sen(n’ qi)cos nan
APPENDIX B ; 27
, ) . . U= f ce,(n, 4;)ce,(n, 4;)cos2ndn
Relations between Mathieu functions and derivatives in 0
different regions ; 27
& o Con= fo ce,, (1, g;)cen(n, q;) dn
[ ce(n,a5)ce(n, a,) dn
0 @ . (37, ’
A n= Zr Sm,n"j(; sem("’a qi)sen(n’ qi)d'n
fo cey(n,q,)dn ,
R w
. T0= [ een(n, 4)se,(n, ) dn.
[se(n,a2)se,(n, a1)
Bron=—
r.n 27
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