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The Elliptical Surface Wave Transmission Line

SEMBIAM R. RENGARAJAN, MEMBER, IEEE AND J. E. LIWVfS, SENIORMEMBER, IEEE

AbWwet—lEketrornagnetic wave propagation on an efliptkaf mOss-

sectfonal surface-wave trarmrnkion fiie is investigated theoretically. Char-

acteristic equatiom for odd and even hybrid modes are derived and solved

numerfcafly. Expressions are obtained for power flow, energy storage and

power loss using a perturbation method. Nomericat remdta on propagation

characteristics of three lower order modes are presented. ‘he . HE ~1 mode

is shown to have low attenuation particularly at high eceentrfeitiea. The

propagation characteristics of fines of high eccentricities are found to he

slowly varying fonetione of dimensions.

I. INTRODUCTION

s INGLE WIRE transmission lines and dielectric

coated conductors of circular cross sections have

been studied extensively [1]–[5]. King and Wiltse [4] have

shown that the circular Goubau line has application in

millimeter wave propagation because of low attenuation.
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Cutoff wave numbers of several low-order modes in

Goubau lines have been reported recently [5]. The even

dominant mode in elliptical dielectric rod and tube wave-

guides has been shown to have lower attenuation than the

corresponding mode in circular dielectric waveguides.

Also, the attenuation is a slowly varying function of

dimensions in the elliptical case, resulting in greater di-

mensional tolerances [6]– [9]. It follows that Goubau lines

of elliptical cross sections should exhibit improved propa-

gation characteristics over circular cases.

Karbowiak’s [10] analysis of the elliptical Goubau line

has very limited applications since he considered only one

term in the infinite series for field expressions. Roumelio-

tis et al. [11] have obtained wavenumbers of certain modes

in the above waveguide for small eccentricities only. Prop-

agation characteristics of elliptical Goubau lines have not

been reported.

In this work, the elliptical Goubau line is studied theo-

retically using the perturbation method and numerical

results for propagation characteristics are presented.

II. FIELD COMPONENTS

The elliptical Goubau line consists of an elliptical cylin.
drical conductor coated with a confocal dielectric layer as

shown in Fig. 1. Though a constant dielectric thickness
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Fig. 1. Elliptical surface-wave transmission line and coordinate system.

would be of greater practical significance, the elliptical

dielectric layer simplifies the analysis. Due to the lack of

circular symmetry this waveguide can propagate only hy-

brid modes.

Omitting the t – z dependence, e~(”f-~’), where ~ is the

phase coefficient and w is the angular frequency, the

lossless axial fields in region i, (i= 1, 2) for even modes are

E=,= ~ u~)A~)($, qi)se~(q, q,)
~=1

Hzi= ~ b#B~)(.$, q,)ce~(q, qi) (1)
~=o

where ~~) and b:) are arbitrary constants, and A~)(~, qi)

and 11~)(~, qi) are functions of modified Mathieu func-

tions in region i. The functions for region 1 are chosen

such that the tangential electric fields are zero on the

conductor, while for region 2 all functions vanish at

infinity.

The parameter qi is given by

%=(@ -B2)~2/4

where ki is the wavenumber for region i and h is the

semi-interfocal distance, and

for even modes

4)( C,4,)=
Sem($, ql)–

Se&(.$’o, ql)
Gqzm(& q,),

Gqy;($’o, ql)

for odd modes

-z&(f, q2)=Gekm(f, %)

c4(4’01 CZI)
Cem(&’,q,)–

~%xto>~l)

@m(&> fll),

for even modes

for odd modes

B(2)(c, q2)=I’ekm($, %).m

(2)

(3)

Leaving the second term from (2) and (3) for i= 1 yields

the field exmessions for the elliptical dielectric rod wave-

guide [6]. The transverse field components are

“[
w

,,

‘g’=- (k;~/32)L ‘~?la;)As)(*’qi) sem(q’q’)

m I

where

L=h[(cosh2$– cos2q)/2]1f2

and pi and e, are the permeability and permittivity of
medium i, respectively. The field components for odd

modes are obtained by the method given in Appendix A.

III. CHARACTERISTIC EQUATIONS

The characteristic equations are obtained by matching

the tangential fields at the boundary, ~= &l. Matching the

axial fields given by (1) at &=$ ~, and making use of

orthogonality properties of Mathieu functions given in

Appendix B, yields

~=]

(5)@Boy&l, q,)= ~ byBj2)(&lj 42)%, r
rr

~=o

where am ~ and &, are defined in Appendix B, and the

prime ov& the summation sign means that either odd or

even values of m are used, depending on whether r is odd

or even.

Matching the azimuthal fields given by (4) at ~= f] and

making use of (5) to eliminate the arbitrary constants in

region 1 and the use of orthogonality properties of Mathieu

functions given in Appendix B yields two sets of infinite

homogeneous equations

w’ ‘w’

(6)
. .
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where the functions e, f, g,h are defined in Appendix C.

In order that (6) may be satisfied, the infinite determin-

ant of the system must be set to zero. This determinental

equation, which is the characteristic equation takes two

forms depending on m and r being odd or even. For odd

values

While

of m and r

for even values of m and r

hn~ gzo Lo a ho . “-----

% I e22 f22~ e42 f42 o “
h 02 [g22 h22 1 g42 ’42 “ “—— --- ——. - -

fw e24 .h; eu fu~” “
hM g24 hzd Lg44 h~ I “ “

. ~–y————

. l..

=0.

(7)

(8)

The characteristic equations for odd modes can be

obtained from (6) using the method given in Appendix A.
They may also be obtained from (7) and (8) by inter-

changing &‘s and p‘s and changing the signs of fm,, and

g~,, for all m and r. Characteristic equations similar to (7)

and (8) have been obtained for elliptical dielectric wave-

guides ”[6], [12].

IV. MODE SPECTRA

The mode spectra for odd and even

obtained bv a numerical solution of

hybrid modes are

the characteristic

equations and are shown in Fig. 2. The required Mathieu

functions and related parameters are generated by an

accurate algorithm [13]. The mode designation is obtained

from the sequence of solutions and by comparing the

modes for the circular and elliptical cross sections. The

eHE~n (. EH~.) and .HE~. (OEHJ modes degenerate
to the well known HE~. (EHW.) modes of the circular

Goubau line as the elliptical cross section degenerates to

the circular case, while .HEO. (0 EHO. ) modes become

Ho. (Eo.) modes. It is observed from Fig. 2 that the
.EHOI, .HEII, and .HEI ~ modes have zero cutoff fre-

quencies, as do the corresponding Eol and HE ~~ modes in

the circularly symmetric case [2].

It has been reported [6]–[8] that the infinite de-

terminantal equations in the case of elliptical dielectric

waveguides are fast convergent for other than high ec-

centricities. This behavior also has been observed for the

case under study.

A. Field Distribution

The arbitrary constants in region 2 at any point on a

given mode are obtained by the singular value decomposi-
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Fig. 2. Mode spectrum of the elliptical surface-wave transmission line
for e,, =2.26, 8,2= 1.0, &= O.909, f]= 1.0.
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Fig. 3. Radial dependence of electric and magnetic fields of the . EHOI
mode for erl = 2,.26, e,2= 1.0, ko/f?* 0.974, (h@sh gI)/~O= 0.524.

tion method [14]. The constants in region 1 are obtained

from (5) and the field components can then be computed

from (1) and (4). It has been found that even though th~

characteristic equations are fast convergent, the size of the

characteristic determinant is required to be relatively large

to produce good field matching at the boundary. In this

work, characteristic determinants up to order 12 were

used, depending on eccentricity, phase constant, and nor-

malized wavelength.

Typical plots of the radial variation of the electric and

magnetic field components for ~EHOI mode are shown in

Fig. 3. The ,HE1l and . HE,, modes are found to have

similar characteristics. However the angular variation of

HE~. (EH~. ) modes have primarily a harmonic variation
of order m.

V. PROPAGATION CHARACTERISTICS

A. Phase Characteristics

The phase characteristics are obtained by numerical

solution of the characteristic equations. The phase char-

acteristics of .EHO1, ,HEII, and .HE1, modes for

different dielectric constants, dielectric thicknesses, and

eccentricities are illustrated in Fig. 4(a), (b), and (c). It is

found that, even though it has zero cutoff frequency, the

.HE, ~ mode has the highest value of normalized phase

velocity at any given frequency and hence it is the weakest

guided mode. Near cutoff, the phase characteristics of the

eHE ~1 mode resemble those of .HEI1 mode, whereas

far-above cutoff the phase velocity approaches that of the

.EHOI mode. From Fig. 2 it is found that higher order
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thickness. The separation between the phase plots of

~EHO1 and .HEI ~ modes increases with eccentricity.

B. Power Flow

The power flow though medium i is given by

where (2= w. Substituting the expressions for Ee, H~, Eq,

and Ht from (4) in (9) yields for even modes

2<=
ni “5,-IL m=i)

m’

(b)

. [B(i)($, qj)A$)($~ qi)]~.,m

061 t
o 05 10 15 20 25

Normalized sem!-major axis, (h cosh ~f)/&

(c)

Fig. 4. (a) Phase characteristics for different eccentricities, e,l = 2.26,

e,z= 1.0. (b) Phase characteristics for different dielectric constants,
&=0.909, &=1.0, e,z = 1.0. (c) ph~e ch~acteristics for different
dielectric thicknesses for S,l = 2.26, 6,2= 1.0, -$1= 1.O-

Fig. 5.
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.5,2 = 1.0,

modes have more rapid variation of their characteristics

with dimensions, particularly near cutoff.

The normalized phase velocity increases with eccentric-

ityy and decreases with increasing dielectric constant or

“ [am(9i)-an(4j)] -1+* i s ai)a$%:)n
r m=l n=m+2

.[b~(ql)-bn(qi)]-’ (lo)

where a~(qi ) and b~(q, ) are the characteristic values of

even and odd Mathieu functions of order m, respectively.

The angular integrals C:,)., s~)~, and T~~ are defined in

Appendix D and the primes o~er the summation indicate

that only odd or even integral values are used.

The power flow expression for odd modes is obtained

by the method given in Appendix A.

The fractional power carried by media 1 and 2 for

~EH .1, .HEI,, and .HE,, modes is shown in Fig. 5. Most

of the power is carried in medium 2 near cutoff and in

medium 1 far above cutoff. Among these three modes at

any given normalized frequency the .HE ~~ mode carries

the largest fraction of power in medium 2.

Since the Goubau line is an open structure it is subject

to radiation and interference at bends or discontinuities.

It may be shielded by being embedded in a material such

as polyfoam as suggested for the dielectric tube waveguide

[15], The power concentration characteristics of Goubau

lines are illustrated in Fig. 6 which shows a plot of the

semi-major axis of the ellipse within which 99.9 percent of
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Fig. 6. Power concentration characteristics for different dielectric
thicknesses, erl =2.26, e,z = 1.0, &l = 1.0.

the total power is contained versus the semimajor axis of

the outer boundary ellipse, both normalized to free-space

wavelength. It is seen that power concentration near the

guide decreases with eccentricity. It is seen also from Fig.

6 that the ~HEll mode has the largest radial extension of

the three modes considered.

C. Energy Storage

The energy stored per unit length in medium i is given

by

‘=~J’’,J2m[lEzi12 +lEEi12+lEqi12] L2d~df (11)
‘—

where $2 = co. Using (1) and (4) in (11) yields for the even

modes

. [Ay(g,qi)A:y&qi )-A$’)(&q.)Am’(,&q.)]$_,In 1

. [b~(qi)-bn(qi)]-l + W ~ ; b$)b~)c$~n
m=O n=m+2

“ [B#Y($>qi)B~i)( f>4,)-;$)($,4i)BiiY($, qi)]$_,

~ [am(~i)-an(qi)]’1 + Y ; ~ %)a$?~~~

1 ~=o ~=1

- [~#)(&,4i)AY)(~J~i)]~-, (12)

where the integrals C#~~, s~~~, T~~, and V$\ are defined

in Appendix D. The expression fo~ odd modes is obtained

from (12) by the method in Appendix A.

D. Power Loss

Power loss per unit length Ni in a dielectric is obtained

by the perturbation method.

iV. =utan8i ~ (1:))

where tan Si is the loss and ~. is the energy stored in the

medium.

The power loss tangent in the conductor is obtained by

a perturbation method from the lossless fields. The con-

ventional perturbation method to find the power loss in a

hollow conducting waveguide using the intrinsic imped-

ance of the metal as the surface impedance has been

shown to be applicable to elliptical cross section [16]. The

conductor power loss per unit length for the Goubau line

is given by

pc=+~2”lHz,[2RmLd~ ++~2”lHq,12RmLdq (14)

dwhere R. = ‘p~ , P iS the permeability, and u is the

conductivity bf the metal. Substituting for H, I and Hql

from (1) and (4) in (14) yields for even modes

r m’ m’

m=O n=l

(15)

where e= 1/cosh to is the eccentricity of the elliptical

cross section of the conductor boundary. A similar result

for odd modes may be obtained from (15) by the method

described in Ajppendix A.

E. Attenuation Characteristics

The attenuation coefficient is obtained from computed

values of power loss and power flow. The attenuation n

characteristics of three low-order modes are shown in Fig.

7 for different, dielectric thicknesses and eccentricities.
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Fig. 7. Attenuation characteristics, .s,,= 2.26, e,2= 1.0, tan 6 = 5.10-4,
0=5.8. 107 S/m, ~cosh c1= 1.0 cm.
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Fig. 8. Group velocity characteristics for different dielectric thick-
nesses, e,, = 2.26, e,z = 1.0, .$I = 1.0.

The attenuation increases with dielectric thickness. As

predicted by phase and power flow characteristics, ~HE ~,

mode has the lowest attenuation at any given normalized

frequency. Also the attenuation is a very slowly-varying

function of dimensions in lines of high eccentricities. The

difference in attenuation between the .HE II and .EHOI

modes increases with eccentricity.

G. Group Veloci&

The group velocity can be obtained from the power

flow and energy storage per unit length

2 2

Vg= ~ ~./ ~ Wi (16)
i=l i= 1

where ~. and ~. can be computed from (10) and (12).

Group velocity characteristics normalized to the free space

velocity UO of a line for two dielectric thicknesses are

shown in Fig. 8. Near cutoff group velocity is close to the

free space value, while far above cutoff, it approaches the

velocity of TEM waves in the dielectric.

VI. CONCLUSION

In this work, results of a comprehensive study of the

propagation characteristics of elliptical surface wave

transmission lines are presented. The mode spectrum

shows a direct correspondence to that of the circularly

symmetric case. Two orthogonally polarized degenerate

HEII modes in the circular waveguide are split into non-

degenerate even and odd HE ~~ modes in the elliptical

case. Propagation characteristics of nearly degenerate EOI

and HE ~~ modes in the circular case are widely separated

in the . EHOI and HE ~~ modes of the elliptical guide. The

~EHO1 and HE II modes in the elliptical waveguide have

lower attenuation than the corresponding modes in the

circular case. Also, the propagation characteristics of

Goubau lines of high eccentricities are slowly varying

functions of transverse dimensions and frequency. Hence

the elliptical waveguides have the advantage of greater

dimensional tolerances over the circular ones. The ~HEl,

mode in the elliptical line is weakly bound to the line and

has possible application in low loss transmission particu-

larly- in millimeter wave frequencies.

APPENDIX A

Functions to be interchanged to obtain

odd modes from those of even modes

~:) b;)

‘:)($, 4i) ‘:)(C, qi)

Ag)’(g, qi) ‘~Y($, gt)

~em(qj 4i) Cem(~7 ~i)

Wdn7 ~i) C%(T7 !li)

s(i)
m,n

f-f-f)n

v(i)
m,n

U:)n

expressions for
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T:~ . T:~

lid am(4i)

B,2’; :,:.-v

APPENDIX B

Relations between Mathieu functions

different regions

and derivatives in

J27cer(~j42)ce.(~341)~n
a

“n=0~’”.f+(%%)fh

APPENDIX C

Elements in the characteristic determinant

win,
[

4Y($1,41)A:)(tl> 42)
em,r P= - ‘1@(&, 91)

hf
– —%~:~(cl> q’)

h; I

()
jm,,= 1-$ B:)($,, q’) ~ fxm,n+n,,

2 ~=”

$k, r= –
()

1– g A:)($,, q’) j pm,nvn,,

2 ~=1

h
oa~ ~

[

@’(tl,91)
m,r

= - l%~y(~l’ q’) B$’)(&l> 41)

P

hf 1–~w’%?’(%l’) .
2
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APPENDIX D

Integrals involving products of angular Mathieu fumc-

tions and derivatives in Sections V-B and V-C

[1]

[2]

‘J)n==J2m~em(~, ~i)~en(~,4i)cos2~~~

u/\== j2”cem(T,4i)cen(~, ~i)cos2T~T

clj.==}*ceL(T,4i) ce~(T,4i)~~

‘#?n==}7seL(T,4i)seL( V,9i)~~

‘$l==j2*ceL(T,~i)~en(T,4i)~~.
o
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